Search results for " Conjecture"

showing 10 items of 96 documents

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Principal Poincar\'e Pontryagin Function associated to some families of Morse real polynomials

2014

It is known that the Principal Poincar\'e Pontryagin Function is generically an Abelian integral. We give a sufficient condition on monodromy to ensure that it is an Abelian integral also in non generic cases. In non generic cases it is an iterated integral. Uribe [17, 18] gives in a special case a precise description of the Principal Poincar\'e Pontryagin Function, an iterated integral of length at most 2, involving logarithmic functions with only one ramification at a point at infinity. We extend this result to some non isodromic families of real Morse polynomials.

Abelian integralPure mathematicsLogarithmApplied Mathematics34M35 34C08 14D05General Physics and AstronomyStatistical and Nonlinear PhysicsMorse codelaw.inventionPontryagin's minimum principlesymbols.namesakeMonodromylawPoincaré conjecturesymbolsPoint at infinitySpecial caseMathematics - Dynamical SystemsMathematical PhysicsMathematics
researchProduct

Hodge Numbers for the Cohomology of Calabi-Yau Type Local Systems

2014

We determine the Hodge numbers of the cohomology group \(H_{L^{2}}^{1}(S, \mathbb{V}) = H^{1}(\bar{S},j_{{\ast}}\mathbb{V})\) using Higgs cohomology, where the local system \(\mathbb{V}\) is induced by a family of Calabi-Yau threefolds over a smooth, quasi-projective curve S. This generalizes previous work to the case of quasi-unipotent, but not necessarily unipotent, local monodromies at infinity. We give applications to Rohde’s families of Calabi-Yau 3-folds.

AlgebraHodge conjecturePure mathematicsMathematics::Algebraic Geometryp-adic Hodge theoryHodge theoryGroup cohomologyDe Rham cohomologyEquivariant cohomologyType (model theory)Mathematics::Symplectic GeometryHodge structureMathematics
researchProduct

Counterexamples to the Kalman Conjectures

2018

In the paper counterexamples to the Kalman conjecture with smooth nonlinearity basing on the Fitts system, that are periodic solution or hidden chaotic attractor are presented. It is shown, that despite the fact that Kalman’s conjecture (as well as Aizerman’s) turned out to be incorrect in the case of n > 3, it had a huge impact on the theory of absolute stability, namely, the selection of the class of nonlinear systems whose stability can be studied with linear methods. peerReviewed

Barabanov systemsäätöteoriakaaosteoriamethodKalman conjectureFitts systempoint-mappinghidden attractor
researchProduct

Nonlinear Analysis of Charge-Pump Phase-Locked Loop : The Hold-In and Pull-In Ranges

2021

In this paper a fairly complete mathematical model of CP-PLL, which reliable enough to serve as a tool for credible analysis of dynamical properties of these circuits, is studied. We refine relevant mathematical definitions of the hold-in and pull-in ranges related to the local and global stability. Stability analysis of the steady state for the charge-pump phase locked loop is non-trivial: straight-forward linearization of available CP-PLL models may lead to incorrect conclusions, because the system is not smooth near the steady state and may experience overload. In this work necessary details for local stability analysis are presented and the hold-in range is computed. An upper estimate o…

CP-PLLvärähtelythidden oscillationsphase-locked loopsVCO overloadelektroniset piiritGardner conjecturecharge-pump PLLmatemaattiset mallit
researchProduct

Some remarks on the Erdős-Turán conjecture

1993

CombinatoricsAlgebra and Number TheoryConjectureElliott–Halberstam conjectureabc conjectureBeal's conjectureErdős–Straus conjectureErdős–Gyárfás conjectureLonely runner conjectureMathematicsCollatz conjectureActa Arithmetica
researchProduct

On Brauer’s Height Zero Conjecture

2014

In this paper, the unproven half of Richard Brauer’s Height Zero Conjecture is reduced to a question on simple groups.

CombinatoricsComputer Science::Hardware ArchitectureConjectureApplied MathematicsGeneral MathematicsSimple groupBlock theoryZero (complex analysis)Mathematics::Representation TheoryMathematicsCollatz conjectureJournal of the European Mathematical Society
researchProduct

On the number of prime divisors of the order of elliptic curves modulo p

2005

CombinatoricsDiscrete mathematicsAlgebra and Number TheorySato–Tate conjectureCounting points on elliptic curvesSchoof's algorithmTwists of curvesSupersingular elliptic curveLenstra elliptic curve factorizationPrime (order theory)Division polynomialsMathematicsActa Arithmetica
researchProduct

Poincaré Week in Göttingen, 22–28 April 1909

2018

When Paul Wolfskehl died in 1906, his will established a prize for the first mathematician who could supply a proof of Fermat’s Last Theorem, or give a counterexample refuting it. The interest from this prize money was later used to bring world-renowned mathematicians to Gottingen to deliver a series of lectures. Hilbert was apparently very pleased with this arrangement, and once jested that the only thing that kept him from proving Fermat’s famous conjecture was the thought of killing the goose that laid these golden eggs.

CombinatoricsFermat's Last Theoremsymbols.namesakeConjectureSeries (mathematics)PhilosophyPoincaré conjecturesymbolsCounterexample
researchProduct

From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture

2020

Abstract In this paper we study the joint convexity/concavity of the trace functions Ψ p , q , s ( A , B ) = Tr ( B q 2 K ⁎ A p K B q 2 ) s , p , q , s ∈ R , where A and B are positive definite matrices and K is any fixed invertible matrix. We will give full range of ( p , q , s ) ∈ R 3 for Ψ p , q , s to be jointly convex/concave for all K. As a consequence, we confirm a conjecture of Carlen, Frank and Lieb. In particular, we confirm a weaker conjecture of Audenaert and Datta and obtain the full range of ( α , z ) for α-z Renyi relative entropies to be monotone under completely positive trace preserving maps. We also give simpler proofs of many known results, including the concavity of Ψ p…

ConjectureTrace (linear algebra)General Mathematics010102 general mathematicsRegular polygonPositive-definite matrix01 natural sciencesConvexitylaw.inventionCombinatoricsMonotone polygonInvertible matrixDyson conjecturelaw0103 physical sciences010307 mathematical physics0101 mathematicsMathematicsAdvances in Mathematics
researchProduct